網站首頁 個人文檔 個人總結 工作總結 述職報告 心得體會 演講稿 講話致辭 實用文 教學資源 企業文化 公文 論文

高中物理知識點總結【新版多篇】

欄目: 工作總結精選 / 發佈於: / 人氣:2.28W

高中物理知識點總結【新版多篇】

高中物理知識點總結 篇一

知識點總結

一、開普勒行星運動定律

(1)、所有的行星圍繞太陽運動的軌道都是橢圓,太陽處在所有橢圓的一個焦點上,

(2)、對於每一顆行星,太陽和行星的聯線在相等的時間內掃過相等的面積,

(3)、所有行星的軌道的半長軸的三次方跟公轉週期的二次方的比值都相等。

二、萬有引力定律

1、內容:宇宙間的一切物體都是互相吸引的,兩個物體間的引力大小,跟它們的質量的乘積成正比,跟它們的距離的平方成反比、

2、公式:F=Gr2m1m2,其中G=6.67×10-11 N·m2/kg2,稱為引力常量、

3、適用條件:嚴格地説公式只適用於質點間的相互作用,當兩個物體間的距離遠遠大於物體本身的大小時,公式也可近似使用,但此時r應為兩物體重心間的距離、對於均勻的球體,r是兩球心間的距離、

三、萬有引力定律的應用

1、解決天體(衞星)運動問題的基本思路

(1)把天體(或人造衞星)的運動看成是勻速圓周運動,其所需向心力由萬有引力提供,關係式:Gr2Mm=mrv2=mω2r=mT2π2r.

(2)在地球表面或地面附近的物體所受的重力等於地球對物體的萬有引力,即mg=GR2Mm,gR2=GM.

2、天體質量和密度的估算通過觀察衞星繞天體做勻速圓周運動的週期T,軌道半徑r,由萬有引力等於向心力,即Gr2Mm=mT24π2r,得出天體質量M=GT24π2r3.

(1)若已知天體的半徑R,則天體的密度ρ=VM=πR34=GT2R33πr3

(2)若天體的衞星環繞天體表面運動,其軌道半徑r等於天體半徑R,則天體密度ρ=GT23π可見,只要測出衞星環繞天體表面運動的週期,就可求得天體的密度、

3、人造衞星

(1)研究人造衞星的基本方法:看成勻速圓周運動,其所需的向心力由萬有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、

(2)衞星的線速度、角速度、週期與半徑的關係

①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、

②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、

③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大

(3)人造衞星的超重與失重

①人造衞星在發射升空時,有一段加速運動;在返回地面時,有一段減速運動,這兩個過程加速度方向均向上,因而都是超重狀態、

②人造衞星在沿圓軌道運動時,由於萬有引力提供向心力,所以處於完全失重狀態、在這種情況下凡是與重力有關的力學現象都會停止發生、

(4)三種宇宙速度

①第一宇宙速度(環繞速度)v1=7.9 km/s.這是衞星繞地球做圓周運動的最大速度,也是衞星的最小發射速度、若7.9 km/s≤v<11.2 km/s,物體繞地球運行、

②第二宇宙速度(脱離速度)v2=11.2 km/s.這是物體掙脱地球引力束縛的最小發射速度、若11.2 km/s≤v<16.7 km/s,物體繞太陽運行、

③第三宇宙速度(逃逸速度)v3=16.7 km/s這是物體掙脱太陽引力束縛的最小發射速度、若v≥16.7 km/s,物體將脱離太陽系在宇宙空間運行、

題型:

1、求星球表面的重力加速度在星球表面處萬有引力等於或近似等於重力,則:GR2Mm=mg,所以g=R2GM(R為星球半徑,M為星球質量)、由此推得兩個不同天體表面重力加速度的關係為:g2g1=R12R22·M2M1.

2、求某高度處的重力加速度若設離星球表面高h處的重力加速度為gh,則:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可見隨高度的增加重力加速度逐漸減小、ggh=(R+h)2R2.

3、近地衞星與同步衞星

(1)近地衞星其軌道半徑r近似地等於地球半徑R,其運動速度v=RGM==7.9 km/s,是所有衞星的最大繞行速度;運行週期T=85 min,是所有衞星的最小週期;向心加速度a=g=9.8 m/s2是所有衞星的最大加速度、

(2)地球同步衞星的五個“一定”

①週期一定T=24 h. ②距離地球表面的高度(h)一定③線速度(v)一定④角速度(ω)一定

⑤向心加速度(a)一定

高中物理知識點總結 篇二

一。力學中的物理學史知識點

1、前384年—前322年,古希臘傑出思想家亞里士多德:在對待“力與運動的關係”問題上,錯誤的認為“維持物體運動需要力”。

2、1638年意大利物理學家伽利略:最早研究“勻加速直線運動”;論證“重物體不會比輕物體下落得快”的物理學家;利用著名的“斜面理想實驗”得出“在水平面上運動的物體若沒有摩擦,將保持這個速度一直運動下去即維持物體運動不需要力”的結論;發明了空氣温度計;理論上驗證了落體運動、拋體運動的規律;還製成了第一架觀察天體的望遠鏡;第一次把“實驗”引入對物理的研究,開闊了人們的眼界,打開了人們的新思路;發現了“擺的等時性”等。

3、1683年,英國科學家牛頓:總結三大運動定律、發現萬有引力定律。另外牛頓還發現了光的色散原理;創立了微積分、發明了二項式定理;研究光的本性併發明瞭反射式望遠鏡。其最有影響的著作是《自然哲學的數學原理》。

4、1798年英國物理學家卡文迪許:利用扭秤裝置比較準確地測出了萬有引力常量G=6.67×11-11n·m2/kg2(微小形變放大思想)。

5、1905年愛因斯坦:提出狹義相對論,經典力學不適用於微觀粒子和高速運動物體。即“宏觀”、“低速”是牛頓運動定律的適用範圍。

二。熱學中的物理學史

1、1827年英國植物學家布朗:發現懸浮在水中的花粉微粒不停地做無規則運動的現象——布朗運動。

2、1661年英國物理學家玻意耳發現:一定質量的氣體在温度不變時,它的壓強與體積成反比,即為玻意耳定律。

3、1787年法國物理學家查理髮現:一定質量的氣體在體積不變時,它的壓強與熱力學温度成正比,即為查理定律。

4、1802年法國物理學家蓋·呂薩克發現:一定質量的氣體在壓強不變時,它的體積與熱力學温度成正比,即為蓋·呂薩克定律。

三。電、磁學中的物理學史

1、1785年法國物理學家庫侖:藉助卡文迪許扭秤裝置並類比萬有引力定律,通過實驗發現了電荷之間的相互作用規律——庫侖定律。

2、1826年德國物理學家歐姆:通過實驗得出導體中的電流跟它兩端的電壓成正比,跟它的電阻成反比即歐姆定律。

3、1820年,丹麥物理學家奧斯特:電流可以使周圍的磁針發生偏轉,稱為電流的磁效應。

4、1831年英國物理學家法拉第:發現了由磁場產生電流的條件和規律——電磁感應現象。

5、1834年,俄國物理學家楞次:確定感應電流方向的定律——楞次定律。

6、1864年英國物理學家麥克斯韋:預言了電磁波的存在,指出光是一種電磁波,並從理論上得出光速等於電磁波的速度,為光的電磁理論奠定了基礎。

7、1888年德國物理學家赫茲:用萊頓瓶所做的實驗證實了電磁波的存在並測定了電磁波的傳播速度等於光速並率先發現“光電效應現象”。

高中物理知識點總結 篇三

1、電流強度:I=q/t{I:電流強度(A),q:在時間t內通過導體橫載面的電量(C),t:時間(s)}

2、歐姆定律:I=U/R{I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}

3、電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}

4、閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內+U外

{I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內阻(Ω)}

5、電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}

6、焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}

7、純電阻電路中:由於I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8、電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}

9、電路的串/並聯串聯電路(P、U與R成正比)並聯電路(P、I與R成反比)

電阻關係(串同並反)R串=R1+R2+R3+1/R並=1/R1+1/R2+1/R3+

電流關係I總=I1=I2=I3I並=I1+I2+I3+

電壓關係U總=U1+U2+U3+U總=U1=U2=U3

功率分配P總=P1+P2+P3+P總=P1+P2+P3+

10、歐姆表測電阻

(1)電路組成(2)測量原理

兩表筆短接後,調節Ro使電錶指針滿偏,得

Ig=E/(r+Rg+Ro)

接入被測電阻Rx後通過電錶的電流為

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由於Ix與Rx對應,因此可指示被測電阻大小

(3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數{注意擋位(倍率)}、撥off擋。

(4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。

11、伏安法測電阻

電流表內接法:電流表外接法:

電壓表示數:U=UR+UA電流表示數:I=IR+IV

Rx的測量值=U/I= (UA+UR)/IR=RA+Rx>R真Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA[或Rx>(RARV)1/2]選用電路條件Rx

高中物理知識點總結 篇四

1電場基本規律

1、庫侖定律

(1)定律內容:真空中兩個靜止點電荷之間的相互作用力,與它們的電荷量的乘積成正比,與它們的距離的平方成反比,作用力的方向在它們的連線上。

(2)表達式:k=9.0×109N·m2/C2——靜電力常量

(3)適用條件:真空中靜止的點電荷。

2、電荷守恆定律

電荷既不會創生,也不會消滅,它只能從一個物體轉移到另一個物體,或者從物體的一部分轉移到另一部分,在轉移過程中,電荷的總量保持不變。

(1)三種帶電方式:摩擦起電,感應起電,接觸起電。

(2)元電荷:最小的帶電單元,任何帶電體的帶電量都是元電荷的整數倍,e=

1.6×10-19C——密立根測得e的值。

2電場能的性質

1、電場能的基本性質:電荷在電場中移動,電場力要對電荷做功。

2、電勢φ

(1)定義:電荷在電場中某一點的電勢能Ep與電荷量的比值。

(2)定義式:φ——單位:伏(V)——帶正負號計算

(3)特點:

1、電勢具有相對性,相對參考點而言。但電勢之差與參考點的選擇無關。

2、電勢一個標量,但是它有正負,正負只表示該點電勢比參考點電勢高,還是低。

3、電勢的大小由電場本身決定,與Ep和q無關。

4、電勢在數值上等於單位正電荷由該點移動到零勢點時電場力所做的功。

(4)電勢高低的判斷方法

1、根據電場線判斷:沿着電場線電勢降低。φA>φB

2、根據電勢能判斷:

正電荷:電勢能大,電勢高;電勢能小,電勢低。

負電荷:電勢能大,電勢低;電勢能小,電勢高。

結論:只在電場力作用下,靜止的電荷從電勢能高的地方向電勢能低的地方運動。

3電勢能Ep

(1)定義:電荷在電場中,由於電場和電荷間的相互作用,由位置決定的能量。電荷在某點的電勢能等於電場力把電荷從該點移動到零勢能位置時所做的功。

(2)定義式:——帶正負號計算

(3)特點:

1、電勢能具有相對性,相對零勢能面而言,通常選大地或無窮遠處為零勢能面。

2、電勢能的變化量△Ep與零勢能面的選擇無關。

4電勢差UAB

(1)定義:電場中兩點間的電勢之差。也叫電壓。

(2)定義式:UAB=φA-φB

(3)特點:

1、電勢差是標量,但是卻有正負,正負只表示起點和終點的電勢誰高誰低。若UAB>0,則UBA<0。

2、單位:伏

3、電場中兩點的電勢差是確定的,與零勢面的選擇無關

4、U=Ed勻強電場中兩點間的電勢差計算公式。——電勢差與電場強度之間的關係。

5靜電平衡狀態

(1)定義:導體內不再有電荷定向移動的穩定狀態

(2)特點:

1、處於靜電平衡狀態的導體,內部場強處處為零。

2、感應電荷在導體內任何位置產生的電場都等於外電場在該處場強的大小相等,方向相反。

3、處於靜電平衡狀態的整個導體是個等勢體,導體表面是個等勢面。

4、電荷只分布在導體的外表面,在導體表面的分佈與導體表面的彎曲程度有關,越彎曲,電荷分佈越多。

6電場力做功WAB

(1)電場力做功的特點:電場力做功與路徑無關,只與初末位置有關,即與初末位置的電勢差有關。

(2)表達式:WAB=UABq—帶正負號計算(適用於任何電場)WAB=Eqd—d沿電場方向的距離。——勻強電場

(3)電場力做功與電勢能的關係WAB=-△Ep=EpA-EPB

結論:電場力做正功,電勢能減少電場力做負功,電勢能增加

7等勢面

(1)定義:電勢相等的點構成的面。

(2)特點:

等勢面上各點電勢相等,在等勢面上移動電荷,電場力不做功。

等勢面與電場線垂直

兩等勢面不相交

等勢面的密集程度表示場強的大小:疏弱密強。

畫等勢面時,相鄰等勢面間的電勢差相等。

(3)判斷電場線上兩點間的電勢差的大小:靠近場源(場強大)的兩間的電勢差大於遠離場源(場強小)相等距離兩點間的電勢差。

高中物理靜電場公式總結

1、兩種電荷、電荷守恆定律、元電荷:e=1.6×10-19C

2、庫侖定律:F=kQ1Q2/r2 (在真空中)

3、電場強度:E=F/q(定義式、計算式)

4、真空點(源)電荷形成的電場E=kQ/r2

5、勻強電場的場強E=UAB/d

6、電場力:F=qE

7、電勢與電勢差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8、電場力做功:WAB=qUAB=Eqd

9、電勢能:EA=qφA

10、電勢能的變化ΔEAB=EB-EA

11、電場力做功與電勢能變化ΔEAB=-WAB=-qUAB (電勢能的增量等於電場力做功的負值)

12、電容C=Q/U(定義式,計算式)

13、平行板電容器的電容C=εr*S/4πkd=εS/d

14、帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2 /2,Vt=(2qU/m)1/2

15、帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下) 類平垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d) 拋運動平行電場方向:初速度為零的勻加速直線運動d=at2 /2,a=F/m=qE/m